Multiple logistic regression

Dr Wan Nor Arifin

Unit of Biostatistics and Research Methodology, Universiti Sains Malaysia. E-mail: wnarifin@usm.my

Wan Nor Arifin, 2015. *Multiple logistic regression* by Wan Nor Arifin is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/4.0/.

Contents

1	Objectives	3
2	Multiple logistic regression model	3
3	Independent variables	3
4	Determining the significance of the variables4.1Likelihood ratio test, G	4 4 4
5	Model-building steps	5
6	Hands on in SPSS	6
R	References	

1 Objectives

- 1. Extend the knowledge of simple logistic regression to multiple logistic regression.
- 2. Understand and apply model-building steps of multiple logistic regression for independent variables (dichotomous, polytomous and continuous).
- 3. Fit the logistic regression model on an example data in SPSS software.

2 Multiple logistic regression model

A simple logistic regression model is given as

$$z = \alpha + \beta x$$

$$E(Y|x) = P(Y = 1|x) = p = \frac{e^z}{1 + e^z} = \frac{e^{\alpha + \beta x}}{1 + e^{\alpha + \beta x}}$$

In case of multiple logistic regression, it can be extended as,

$$z = \alpha + \beta_1 x_1 + \beta_2 x_2 + \ldots + \beta_p x_p = \alpha + \sum \beta_i x_i$$
$$E(Y|\mathbf{x}) = P(Y=1|\mathbf{x}) = p = \frac{e^z}{1+e^z} = \frac{e^{\alpha + \sum \beta_i x_i}}{1+e^{\alpha + \sum \beta_i x_i}}$$

notice the bold \mathbf{x} to indicate collection of xs.

In effect,

$$ln\left(\frac{p}{1-p}\right) = logit(p) = \alpha + \sum \beta_i x_i$$

and the OR for specific x_i ,

$$OR = e^{\beta i}$$

$$OR = e^{\beta i \Delta}$$

i.e. the OR for x_i while keeping other x_s fixed. Or in standard words, while controlling for other variables.

3 Independent variables

In our previous lecture, we only discussed about fitting the simple logistic regression for binary categorical and continuous variables. Categorical variable with k>2 i.e more than 2 categories was skipped as it is easier to explain in context of multiple logistic regression.

Recall in multiple linear regression, MLR, the need to create k - 1 dummy variables. Similarly in logistic regression, k - 1 dummy variables (a.k.a design variables) have to be created. For example,

race (0: Malay, 1: Chinese, 2: Indian), k = 3 categories

into k-1=2 dummy variables, while treating Indian as reference category.

race1 (1: Malay, 0: Indian & Chinese)

race2 (1: Chinese, 0: Indian & Malay)

thus our model becomes,

 $logit(p) = \alpha + \beta_{race1} race1 + \beta_{race2} race2$

* <u>Unfortunately</u> in SPSS, the dummy variables are automatically generated for you.

4 Determining the significance of the variables

4.1 Likelihood ratio test, G

G = -2[log likelihood model without x variable - log likelihood model with x variable]

$$G = -2(L_0 - L_1)$$

then the *P*-value is $P[\chi^2(1) > G]$, as *G* follows chi-square distribution. The degrees-of-freedom, df = v i.e. difference in number of parameters between the models.

Alternatively, as it is given as $-2 \log$ likelihood in SPSS, or deviance D,

G = D(model without x variable) - D(model with x variable)

 $G = D_0 - D_1$

LR test is preferred over Wald test for multiple logistic regression. In case of simple logistic regression, we used the LR test to determine the significance of a variable by comparing the deviance of model with the variable (D_1) and model containing constant only (D_0) . For multiple logistic regression we can test whether a variable or variables significantly contribute to the model or not in similar way,

G = D(model without x variables) - D(model with x variables) $G = D_B - D_A$

4.2 Wald test, W

$$W = \frac{\hat{\beta}}{\hat{SE}(\hat{\beta})}$$

then the two-tailed *P*-value is P(|z| > W), as *W* follows standard normal distribution. It is more suitable for testing a single variable. In multiple logistic regression, judgment on importance of single variable can be made, but the final decision is best made by LR test.

5 Model-building steps

The following steps are based on purposeful selection steps by Hosmer, Lemeshow and Sturdivant (2013). The model building steps for the logistic regression basically consists of:

- 1. Variable selection.
 - (a) Univariable analysis.
 - i. Categorical variables: Chi-square test.
 - ii. Numerical variables: Simple logistic regression. Independent- $t/{\rm ANOVA}$ not recommended.

(b) Multivariable analysis.

i. Fit selected variables.

- All variables P-value < .25.
- Clinically important variables
- ii. Fit a smaller model by removing non-significant variables.

(c) Comparison of larger to smaller model.

i. Check change in coefficients, $\Delta \hat{\beta} > 20\%$.

$$\Delta \hat{\beta} \% = 100 \frac{(\beta_{small} - \beta_{large})}{\beta_{large}}$$

- i. Identify excluded variables that cause the change.
- ii. Add back important variables (clinically important and confounders).

(d) Add unselected variables.

Identify variables that become significant. \rightarrow Preliminary main effects model.

- (e) Close check on the selected variables.
 - i. Linearity in logit for continuous variables.

ii. Numerical problems.

- Cause very large coefficients and SEs.
 - Small cell counts should be screened in 1(a).
 - Multicollinearity.
 - Between variables.
 - Indicate that the variables are redundant.
 - e.g. Age with Age categories, Dead/Not dead with Pulse present/Pulse absent etc.
 - Use appropriate correlation statistics.
- $\rightarrow Main \ effects \ model.$

(f) Interactions among variables.

Among clinically plausible pairs – added to Main effects model. \rightarrow Preliminary final model.

- 2. Model fit assessment.
 - (a) Goodness-of-fit summary measures.
 - i. Hosmer-Lemeshow test.
 - A. P-value > 0.05.
 - ii. Classification table.
 - A. Correctly classified > 70%.
 - B. Also calculate Specificity and Sensitivity.
 - iii. Area under Receiver Operating Characteristics (ROC) curve.
 - AUC > 0.7
 - (b) Regression diagnostics.
 - (c) Cross-validation.
 - \rightarrow Final model.

We are going to cover only parts highlighted in **bold** only as the rests will be covered in Advanced Statistics in Semester 2.

6 Hands on in SPSS

Dataset: slog.sav (modified from a dataset, courtesy of AP Dr. Kamarul Imran Musa)

Dependent variable (DV): cad (1: Yes, 0: No)

Independent variables (IV): categorical – race (0: Malay, 1: Chinese, 2: Indian), gender (0: Female, 1: Male); numerical – sbp (systolic blood pressure), dbp (diastolic blood pressure), chol (serum cholestrol in mmol/L), age (age in years), bmi (Body Mass Index).

General SPSS steps:

1. Univariable analysis.

- (a) From the menu, Analyze \rightarrow Regression \rightarrow Binary Logistic...
- (b) In Logistic Regression window, assign Dependent: cad, Covariates: sbp.
- (c) Click on Options... button. In the window, choose Iteration history and CI for exp(B). Click on Continue button. Click OK button.

- (d) Repeat for the rest of numerical variables on by one.
- (e) For categorical variables, perform chi-square test. from the menu, Analyze \rightarrow Descriptive Statistics \rightarrow Crosstabs...
- (f) Assuming the data is from a cross-sectional study, assign Rows: cad, Columns: gender. Click on Statistics... button and choose Chi-square. Click on Cells... button and choose Column under Percentages. Click on Continue button. Click OK button.
- (g) Repeat for *race*.
- 2. Multivariable analysis.
 - (a) Following the general step in univariable analysis, assign all selected variables in **Covariates**.
 - (b) For categorical variables, click on Categorical... button. In the window, place gender under Categorical Covariates: Under Change Contrast, choose First (or Last) as Reference Category: and click on Change button. Click on Continue button.
 - (c) Make sure the **Method** selected is **Enter**.
 - (d) Click **OK** button.
- 3. Model fit assessment.
 - (a) Hosmer-Lemeshow test & Classification Table Click on Options... button. In the window, choose Hosmer-Lemeshow goodness-offit. Click on Continue button. Click OK button.
 - (b) Area under ROC curve
 - i. To obtain *Predicted probability*, based on our *preliminary final* model, click on **Save...** followed by choosing **Probabilities** under **Predicted Values**. A new variable (usually *PRE_1*) will be created.
 - ii. From the menu, Analyze → ROC curve... Assign Test Variable: Predicted probability, State Variable: cad, Value of State Variable: 0. Under Display choose ROC Curve, With diagonal reference line and Standard Error and confidence interval.

Perform the model building steps as outlined above in 5.

References

Hosmer, D. and Lemeshow, S. (2000). Applied logistic regression (2nd eds). Wiley Series in Probability and Statistics. USA: John Wiley & Sons, Inc.

- Hosmer, D., Lemeshow, S., and Sturdivant, R. (2013). *Applied Logistic Regression*. Wiley Series in Probability and Statistics. Wiley.
- Kleinbaum, D. and Klein, M. (2002). Logistic regression: A self-learning text (2nd eds). Statistics for Biology and Health. USA: Springer New York.
- Bartholomew, D. J., Steele, F., Moustaki, I., and Galbraith, J. I. (2008). Analysis of multivariate social science data. USA: CRC Press.